DEFINITIONS

BACK PRESSURE: The pressure that is on the outlet side of a component.
BURST PRESSURE: Four times working pressure unless otherwise specified by customer. Actual burst is when a fracture occurs. Fracture occurs when the force on the weakest part of a unit reaches the ultimate strength of the part.

CRACKING PRESSURE:The pressure at which a component starts to open. Circle Seal Controls definition is $5 \mathrm{cc} / \mathrm{min}$ air for an elastomer and 0.02 SCFM for Teflon.
$\mathbf{C}_{\mathbf{v}}: \quad$ Flow capability indication commonly accepted by the valve industry. The literal definition is that a component with a C_{v} of one (1) can flow one (1) gallon of water with a $\Delta \mathrm{P}$ of one (1) PSI. The calculated results from C_{v} equations must be considered reasonable approximations only.

DIFFERENTIAL
PRESSURE ($\Delta \mathbf{P}$): Difference between inlet and outlet pressure.
DROOP: The difference between the set pressure of a regulator and the outlet pressure immediately downstream of the regulator at a certain flowing condition.
E.S.E.O.D. Equivalent sharp edge orifice diameter. E.S.E.O.D. $=0.236 \sqrt{C_{v}}$

LOCK UP: The downstream pressure at which a regulator shuts off.
MEDIA: \quad The gas or liquid that a component will be subjected to.
PROOF PRESSURE: 1-1/2 times the working pressure unless otherwise specified by the customer. No permanent deformation is allowed at proof pressure.

RELIEF PRESSURE: The pressure at which a relief valve opens.

RESEAT PRESSURE: The pressure at which a component is closed after it has been open.

SET PRESSURE: The cracking pressure of a relief valve or back pressure regulator, the lockup pressure of a regulator, the shut-off pressure of a gage saver.

SONIC FLOW:
Flow is sonic when the $\Delta \mathrm{P}$ is equal to or greater than $1 / 2$ of the inlet pressure. Also called choked flow.

SPECIFIC GRAVITY: The ratio of the density of one substance to that of a reference substance. Reference substance is water for liquids and air for gases.

SUBSONIC FLOW: \quad Flow is subsonic when the ΔP is less than $1 / 2$ of the inlet pressure.
TRIM:
All metal parts in contact with media except the body.
WORKING PRESSURE:Maximum pressure that a component will be subjected to under normal working conditions.

ZERO LEAK: Standard Circle Seal definition of zero leakage is:
$3 \times 10^{-4} \mathrm{scc} / \mathrm{sec}$
0.25 bubbles / min

4 minutes / bubble
$C_{v}=\frac{Q \sqrt{G}}{\sqrt{\Delta P}}$
This equation applied to all liquids including cryogenic liquids.

LEGEND

C_{v} - Flow coefficient
Q - Flow in GPM
$\Delta \mathrm{P}$ - Differential Pressure (Difference between inlet and outlet pressure) in PSI.
G - Specific Gravity (Taken from Properties of Liquids)

EXAMPLE

GIVEN: Flow - 20 GPM of Water Inlet pressure - 100 PSIG Outlet pressure-95 PSIG

FIND THE C ${ }_{v}$ REQUIRED.

SOLUTION

Q = 20 GPM
Inlet pressure $=100 \mathrm{PSI}$
Outlet pressure $=95$
$\Delta \mathrm{P}=5 \mathrm{PSI}$
Media = Water
Specific Gravity of Water $=1.0$
$C_{V}=\frac{Q \sqrt{\mathrm{G}}}{\sqrt{\Delta \mathrm{P}}}=\frac{20 \sqrt{1.0}}{\sqrt{5}}$
$C_{v}=\underline{20 \times 1}=8.9$
2.24

NOTE
1 GALLON OF WATER EQUALS 8.336 LBS.
1 LB. OF WATER EQUALS . 1198 GALLONS

DEFINITION

Flow is subsonic when the $\Delta \mathrm{P}$ (differential pressure) is less than $1 / 2$ of the inlet pressure.

$$
C_{v}=\frac{Q \sqrt{G}}{\sqrt{P_{2} \Delta P}}
$$

LEGEND

C_{V} - Flow coefficient
Q - Flow in SCFM
$\Delta \mathrm{P}$ - Differential Pressure (Difference between inlet and outlet pressure) in PSI.
G - Specific gravity of Media (Taken from Properties of Gases)
P_{1} - Inlet pressure in PSIA (PSIG + 14.7)
$P_{2}-\quad$ Outlet pressure in PSIA (PSIG + 14.7)

EXAMPLE

GIVEN: Flow - 100 SCFM of N_{2} Inlet Pressure - 100 PSIG Outlet Pressure - 75 PSIG

FIND THE C ${ }_{v}$ REQUIRED.

SOLUTION

$$
\begin{aligned}
& \mathrm{Q}=100 \mathrm{SCFM} \mathrm{~N}_{2} \\
& \text { Inlet Pressure }=100 \mathrm{PSIG} \\
& \mathrm{P}_{1}=100 \text { PSIG }+14.7=114.7 \mathrm{PSIA} \\
& \text { Outlet Pressure }=75 \text { PSIG. } \\
& \mathrm{P}_{2}=75 \mathrm{PSIG}+14.7=89.7 \mathrm{PSIA} \\
& \Delta \mathrm{P}=\mathrm{P}_{1}-\mathrm{P}_{2}=114.7 \mathrm{PSIA}-89.7 \text { PSIA } \\
& \Delta \mathrm{P}=25 \mathrm{PSI} \\
& \text { Media }=\mathrm{N}_{2} \\
& \text { Specific Gravity of } \mathrm{N}_{2}=0.067 \\
& \mathrm{C}_{\mathrm{v}}=\frac{\mathrm{Q} \sqrt{\mathrm{G}}}{\sqrt{\mathrm{P}_{2} \Delta \mathrm{P}}} \\
& \mathrm{C}_{\mathrm{v}}=\frac{100 \sqrt{0.967}}{\sqrt{89.7 \times 25}} \\
& \mathrm{C}_{\mathrm{v}}=\frac{100 \times 0.983}{\sqrt{2242}}=\frac{98.33}{47.4}
\end{aligned}
$$

GAS FLOW C V_{v} EQUATION SONIC FLOW

DEFINITION

Flow is sonic when the ΔP (Differential Pressure) is equal to or greater than $1 / 2$ of the inlet pressure.

$$
C_{V}=\frac{Q \sqrt{G}}{P_{1} / 2}
$$

LEGEND

C_{v} - Flow coefficient.
Q - Flow in SCFM.
$\Delta \mathrm{P}$ - Differential Pressure (Difference between inlet and outlet pressure) in PSI.
G - Specific Gravity of Media. (Taken from Properties of Gases)
P_{1} - Inlet Pressure in PSIA. (PSIG + 14.7)
P_{2} - Outlet Pressure in PSIA. (PSIG + 14.7)

EXAMPLE

GIVEN: Flow $=100$ SCFM of N_{2} Inlet Pressure $=100$ PSIG Outlet Pressure $=25$ PSIG

FIND THE C V_{v} REQUIRED.

SOLUTION

$$
\begin{aligned}
& Q=100 \text { SCFM of } \mathrm{N}_{2} \\
& \text { Inlet Pressure }=100 \mathrm{PSIG} \\
& \mathrm{P}_{1}=100 \mathrm{PSIG}+14.7=114.7 \mathrm{PSIA} \\
& \text { Outlet Pressure }=25 \mathrm{PSIG} \\
& \mathrm{P}_{2}=25 \mathrm{PSIG}+14.7=39.7 \mathrm{PSIA} \\
& \Delta \mathrm{P}=\mathrm{P}_{1}-\mathrm{P}_{2}=114.7-39.7=75 \mathrm{PSI} \\
& \text { Media }-\mathrm{N}_{2} \\
& \text { Specific Gravity of } \mathrm{N}_{2}=0.967 \\
& \mathrm{C}_{v}=\frac{\mathrm{Q} \sqrt{\mathrm{G}}}{\mathrm{P}_{1} / 2}=\frac{100 \sqrt{0.967}}{114.7 / 2}=\frac{100 \times 0.9533}{57.35} \\
& C_{V}=1.7
\end{aligned}
$$

[^0][^1]

[^2]t-P.V.C.-Satisfactory to $72^{\circ} \mathrm{F}$

* - Polypropylene-Satisfactory to $72^{\circ} \mathrm{F}$
†† - Polypropylene-Satisfactory to $120^{\circ} \mathrm{F}$
- BUNA N-Satisfactory for Seal \& 0-Rings

A - No effect-Excellent
B - Minor effect-Good
C - Moderate effect - Fair, contact Angar
D - Severe effect - Not recommended
X-Carbon/Ceramic Seal
t-P.V.C.-Satisfactory to $72^{\circ} \mathrm{F}$

* - Polypropylene-Satisfactory to $72^{\circ} \mathrm{F}$
t† - Polypropylene-Satisfactory to $120^{\circ} \mathrm{F}$
** - BUNA N-Satisfactory for Seals \& 0-Rings

A - No effect-Excellent
B -Minor effect-Good
C — Moderate effect - Fair, contact Angar
D -Severe effect-Not recommended
X-Carbon/Ceramic Seal

$$
\begin{aligned}
& \text { †-P.V.C. - Satisfactory to } 72^{\circ} \mathrm{F} \\
& \text { - Polypropylene-Satisfactory to } 72^{\circ} \mathrm{F} \\
& \text { tt - Polypropylene-Satisfactory to } 120^{\circ} \mathrm{F} \\
& \therefore \text { - BUNA N-Satisfactory for Seal \& O-RingS }
\end{aligned}
$$

INDUSTRIAL, AEROSPACE AND MILITARY FLUIDS
Service recommendations are based upon the best information available to us assuming normal service with the fluids listed, but are in no way guaranteed. Unusual service conditions may effect the suitability of materials recommended. O-ring recommendations are subject to change as new compounds are developed.

Recommendation Code:
Excellent-Considered most suitable material for service.
Good-Generally satisfactory and recommended for service
O-rings listed below are standard for at least one valve series. To determine standard O-rings for any particular series, please consult the appropriate catalog sheet. For specifications covering O-ring numbers and material letters see reverse side.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FLUID} \& \multicolumn{2}{|l|}{O-RING DESIGNATION} \& \multicolumn{2}{|l|}{BODY MATERIALS} \& \multirow[b]{2}{*}{FLUID} \& \multicolumn{2}{|l|}{O-RING DESIGNATION} \& \multicolumn{2}{|l|}{BODY MATERIALS} \\
\hline \& EXCELLENT \& GOOD \& EXCELLENT \& GOOD \& \& EXCELLENT \& GOOD \& EXCELLENT \& GOOD \\
\hline \begin{tabular}{l}
Acetaldehyde \\
Acetate \\
Acetic Acid \\
Acetic Anhydride \\
Acetone \\
Acetylene \\
Aerozene \\
Air \\
Alcohol \\
Amines Mixed
\end{tabular} \& \[
\begin{array}{|l}
20,62 \\
\\
20,62 \\
20,32,62 \\
20,62 \\
20,32,49,59 \\
69,77,79,99 \\
20,32,49,59, \\
6977,99
\end{array}
\] \& \begin{tabular}{l}
24,62 \\
62 62
\[
49,59
\]
\end{tabular} \& \begin{tabular}{l}
T, T1 \\
A, S, T, T1 \\
T1 \\
T1, A \\
A, B, T, T1 \\
A, S, T, T1 \\
T2, T6 \\
A, B, T, T1 \\
A, B, T, T1 \\
A, T, T1
\end{tabular} \& \[
\begin{array}{|l}
\text { A } \\
\text { B } \\
\text { A, T } \\
\text { T } \\
\text { B } \\
\text { B } \\
\text { A1, T } \\
S
\end{array}
\] \& \begin{tabular}{l}
Hydraulic Oil \\
(MIL-H-5606) \\
Lubricating Oil \\
(MIL-L-7808) \\
Hydraulic Oil \\
(MIL-O-6083) \\
Hydraulic Oil \\
(Mineral Base) \\
Hydrazine \\
Hydrochloric Acid \\
Hydrogen Peroxide \\
IRFNA \\
Isopropyl Acetate
\end{tabular} \& \(20,32,77,99\)
\(16,20,32\)
\(20,69,77,99\)
\(32,49,59,77,99\)
20,62
20,32
20,32
20
20 \& \[
\begin{array}{|l}
62 \\
62 \\
32 \\
62 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
A, B, S, T, T1 \\
A, T, T1 \\
A, B, S, T, T1 \\
A, B, S, T, T1 T2 \\
A1, T, T1, T2 \\
T1, T3
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{A} 1, \mathrm{~T}, \mathrm{~T} 1 \\
\& \mathrm{~T} 3 \\
\& \mathrm{~A} \\
\& \mathrm{~A}, \mathrm{~A} 1, \mathrm{~T}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Ammonia \\
Anhydrous \\
Ammonium \\
Hydroxide \\
Ammonia, Aqueous \\
Ammonium \\
Persulfate \\
Argon \\
Aromatic Fuels \\
Beer
\end{tabular} \& \[
\begin{aligned}
\& 20,62,73 \\
\& 20,62,73 \\
\& 20,62 \\
\& 62 \\
\& 20,32,62 \\
\& 20,32,69,72 \\
\& 32,59,62,73
\end{aligned}
\] \& \begin{tabular}{l}
77, 79 \\
59 \\
73 \\
24. 64 \\
77, 99
\end{tabular} \& \begin{tabular}{l}
T. T1 \\
T, T1 \\
T, T1 \\
T. T1 \\
A, B, T \\
A, B, T, T1 \\
A, T, T1
\end{tabular} \& S
A, S

S \& | Kerosene |
| :--- |
| Ketone |
| Lead Sulfamate |
| Methyl Acetone |
| Methyl Alcohol |
| Methyl Bromide |
| Methyl Chloride |
| Methyl Ethyl Ketone |
| Mono Methyl |
| Hydrazine | \& \[

$$
\begin{array}{|l|}
\hline 20,32,69,77,99 \\
20 \\
62,73 \\
20 \\
49,59,73 \\
20,32 \\
32 \\
20,62 \\
20,32 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 62 \\
& 32 \\
& 62 \\
& 62 \\
& 62 \\
& 62,73
\end{aligned}
$$

\] \& | A, B, S, T, T1 |
| :--- |
| T |
| T, T1 |
| T, T1 |
| A, B, S, T, T1 |
| T, T1 |
| T1 |
| T2 | \& | B, T, T1 |
| :--- |
| T, T1 |

\hline | Benzene |
| :--- |
| Benzyl Alcohol |
| Benzyl Chloride |
| Brake Fluid |
| Automotive |
| Butane |
| Calcium Nitrate |
| Carbon Dioxide |
| Carbon |
| Tetrachloride | \& \[

$$
\begin{aligned}
& 20,32,64 \\
& 20,32 \\
& 20,32 \\
& 62 \\
& 32,59,73 \\
& 32,59,62 \\
& 20,59 \\
& 20,32
\end{aligned}
$$

\] \& | 62, 73 |
| :--- |
| 73 |
| 32, 62 |
| 64 | \& | A, B, T, T1 |
| :--- |
| A, B, T, T1 |
| T, T1 |
| A, B, S, T, T1 |
| A, B, S, T, T1 |
| A |
| A, S, T, T1 |
| T, T1 | \& | B |
| :--- |
| A, B | \& | Natural Gas |
| :--- |
| Nitromethane |
| Nitrogen Gas |
| Nitrogen Liquid |
| Nitrogen Tetroxide |
| Nitrogen Tetroxide |
| Fumes |
| Nitrous Oxide |
| Oxalic Acid |
| Oxygen Gas | \& $32,49,59,73$

$62,59,77,99$
$32,59,7$
20
20
20
20,59
32,62
$20,33,53$ \& 20
73
73

$24,32,62$ \& | A, B, S, T, T1 |
| :--- |
| A, B, S, T, T1 |
| A, B, S, T, T1 |
| A, B, T, T1 |
| T2 |
| T2 |
| A, B, S, T, T1 |
| T1 |
| A, B, T, T1 | \& \[

$$
\begin{aligned}
& \mathrm{T} \\
& \mathrm{~S} \\
& \hline
\end{aligned}
$$
\]

\hline | Chlorine (dry) |
| :--- |
| Chromic Acid |
| Coke Oven Gas |
| Di-isopropyl Ketone |
| Ethylene Glycol |
| Ethylene Oxide |
| Ethyl Mercaptan |
| Freon 11 |
| Freon 12 | \& \[

$$
\begin{aligned}
& 20,32,64 \\
& 32 \\
& 62 \\
& 20,32,49,59 \\
& 20 \\
& 20 \\
& 20 \\
& 20,32,49,59,73 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 32 \\
& 24,64 \\
& \\
& 62,99,77 \\
& 62 \\
& 32 \\
& 32,49,59 \\
& 62 \\
& \hline
\end{aligned}
$$
\] \& $\mathrm{T}, \mathrm{T} 1$

$\mathrm{~T}, \mathrm{~T} 1$
T 1
$\mathrm{~T}, \mathrm{~T} 1$
$\mathrm{~A}, \mathrm{~B}, \mathrm{~T}, \mathrm{~T} 1, \mathrm{~T} 2$
$\mathrm{~T}, \mathrm{~T} 1$
$\mathrm{~T}, \mathrm{~T} 1$
$\mathrm{~A}, \mathrm{~T}, \mathrm{~T} 1$
$\mathrm{~A}, \mathrm{~B}, \mathrm{~T}, \mathrm{~T} 1$

$\mathrm{~A}, \mathrm{~B}, \mathrm{~T}, \mathrm{~T} 1$ \& | T3 |
| :--- |
| T |
| A |
| |
| A, B, S |
| A |
| S |
| S |
| S | \& | Oxygen Liquid |
| :--- |
| Perchlorethylene |
| Phenol |
| Phosphate Esters |
| Phosphoric Acid |
| Propane |
| Pydraul |
| RP-1 |
| Silver Nitrate |
| Skydrol | \& \[

$$
\begin{array}{|l|}
\hline 20 \\
20,32 \\
32 \\
20,62 \\
32,49 \\
20,32,59,99 \\
20,32 \\
20,64,69,99 \\
24,32,59,62,64 \\
62 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 59 \\
& 62 \\
& 62 \\
& 32 \\
& 20
\end{aligned}
$$

\] \& | A, T, T1 |
| :--- |
| T, T1 |
| A, T, T1 |
| A, B, S, T |
| B, S, T, T1 |
| A, T, T1 |
| A, T, T1 |
| T, T1 |
| A, T, T1 | \& \[

$$
\begin{aligned}
& \mathrm{A}, \mathrm{~B} \\
& \mathrm{~T} 1
\end{aligned}
$$
\]

\hline | Freon 13 |
| :--- |
| Freon 21 |
| Freon 22 |
| Freon 114 |
| Freon TF |
| Fuels Aircraft |
| Fuels Automotive |
| Fuels Diesel |
| Fuels Jet |
| Fuels Oil | \& \[

$$
\begin{array}{|l}
\hline 20,32,59,73 \\
20 \\
20,62,73 \\
49,59,62,73 \\
59,73 \\
32,69,77 \\
32,69,77,99 \\
32,69,77,99 \\
32,69 \\
20,32,59 \\
\hline
\end{array}
$$

\] \& | 73 |
| :--- |
| 32 |
| 20 |
| 20 |
| 20 |
| 20 |
| 49, 64 | \& A, B, T, T, T1, S

A, B, T, T1
A, B, T, T1
A, B, T, T1
A, B, T, T1, S
A, B, T, T1
A, B, T, T1
A, B, S, T, T1
A, B, T, T1
A, B, S, T, T1 \& S
S
S
S

S \& \begin{tabular}{l}
Sodium Chloride

Sodium Hydroxide

Steam ($250^{\circ} \mathrm{F}$)

Steam ($300^{\circ} \mathrm{F}$)

Steam ($400^{\circ} \mathrm{F}$)

Sulfur Dioxide (Tri)

Sulfur Hexafluoride

Sulfuric Acid

Toluene

Trichlorethylene

 \&

$49,59,62,73$

62 \&

20 \& 62

20 \& 62

20 \&

62 \&

62,73 \&

20,32 \&

20,32 \&

20,32 \&

 \& \&

M, T, T1

T, T1

B, T, T1

A, B, T, T1

B, T, T1

T, T1

T1

A, B, T, T1

T, T1

 \&

A

T3

A, B, S
\end{tabular}

\hline Furfural Gasoline Solvents Helium Hydraulic Fluids, High Temp. Silicate Base \& $$
\begin{aligned}
& 32,49,59,77,99 \\
& 32,62,73,99 \\
& 32,73
\end{aligned}
$$ \& 62

59

77 \& | A, T, T1 |
| :--- |
| A, B, T, T1 |
| A, B, S, T, T1 |
| T, T1, T2 | \& \[

$$
\begin{array}{|l}
\hline \mathbf{B} \\
\mathbf{S}
\end{array}
$$

\] \& | UDMH |
| :--- |
| Vacuum |
| Water, Fresh |
| Water, Salt |
| Xylene | \& 20,62

62,32
$20,49,59,69,99$
$20,59,73,77$

32 \& | 73,77 |
| :--- |
| 49 |
| 62 |
| $49,59,99$ |
| 64 | \& \[

$$
\begin{aligned}
& \mathrm{T} 2 \\
& \mathrm{~A}, \mathrm{~B}, \mathrm{~S}, \mathrm{~T}, \mathrm{~T} 1 \\
& \mathrm{~T}, \mathrm{~T} 1 \\
& \mathrm{M} \\
& \mathrm{~A}, \mathrm{~B}, \mathrm{~T}, \mathrm{~T} 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{A} 1, \mathrm{~T} \\
& \mathrm{~B} \\
& \mathrm{~T}, \mathrm{~T} 1
\end{aligned}
$$
\]

\hline
\end{tabular}

* " O " rings indicated by " $*$ " are normally stocked in most sizes used.

Notes: 1. Hardness is Shore " D " for Polyethylene, Teflon \& Kel-F, Shore " A " for others. Where required for optimum valve operation, harder or softer " O " rings having identical technical characteristics may be substituted.
2. Exposure to lower temperatures normally will not affect the " O " ring but may reduce the sealing efficiency of the valve. Extended exposure to higher temperatures will damage the " O " ring. These temperatures are for seal material only, not unit operating temperature.
3. For optimum operation at temperatures below $-100^{\circ} \mathrm{F}$ special processing is designated by the prefix letter K in the part number.

SEAT \& POPPET MATERIALS

MATERIAL DESCRIPTION	SPECIFICATIONS
TFE "TEFLON"'	AMS 3652
	AMS 3651
CTFE (KEL-F81)	AMS 3650
NYLON	MIL-P-46069 6/6
TFE "TEFLON" (PREMIUM GRADE)	MIL-R-8791
NYLATRON, GS	-
VESPEL (DUPONT SP-1)	(POLYIMIDE)

OXYGEN SERVICE-Any product ordered with " O " rings suitable for and intended for use in oxygen systems must specify "for oxygen service" when ordered in order for the product to be suitably processed and identified.

LENGTH

$\begin{array}{ll}1 \mathrm{ft.} & =30.48 \mathrm{~cm} . \\ 1 \mathrm{in} . & =2.54 \mathrm{~cm} . \\ 1 \text { micron } & =3.937 \times 10^{-5} \mathrm{in} .\end{array}$

VOLUME

1 cc	= 20 drops oil (approx.)	$1 \mathrm{cu} \mathrm{in}$.	$=327$ drops oil
1 cc	= 16 bubbles from		$=16.387 \mathrm{cc}$
	MS33656-4 Fitting		$=0.5541 \mathrm{oz}$. fluid
1 ml	$=0.06102 \mathrm{cu} \mathrm{in}$.	1 gal .	$=3785 \mathrm{cc}$
	$=0.03381$ oz fluid		= 231 cu in .
1 cu ft	$=7.481 \mathrm{gal}$.		$=128$ oz fluid
	$=1,728 \mathrm{cu} \mathrm{in}$.		$=0.1337 \mathrm{cu} \mathrm{ft}$.
	$=28,316 \mathrm{cc}$	1 liter	$=0.03532 \mathrm{cu} \mathrm{ft}$.
	$=28.32$ liters	1 oz.	$=29.57 \mathrm{cc}$
			$=1.8047 \mathrm{cu} \mathrm{in}$.

WEIGHT

$$
\begin{array}{ll}
1 \mathrm{lb} . & =453.6 \mathrm{gm} . \\
1 \mathrm{gm} . & =0.03527 \mathrm{oz} . \\
1 \mathrm{oz} . & =28.35 \mathrm{gm} .
\end{array}
$$

PRESSURE

$1 \mathrm{~atm} . \quad=14.696 \mathrm{psi}$
$=29.92$ in Hg
$1 \mathrm{in} \mathrm{Hg}=0.4912 \mathrm{psi}$
$1 \mathrm{in} \mathrm{Hg}=13.6$ in $\mathrm{H}_{2} \mathrm{O}$
1 in $\mathrm{H}_{2} \mathrm{O}=0.03609 \mathrm{psi}$

$1 \mathrm{ft} \mathrm{H}_{2} \mathrm{O}$	$=0.4335 \mathrm{psi}$
1 psi	$=27.71 \mathrm{in} \mathrm{H} \mathrm{H} 0$
	$=0.06805 \mathrm{~atm}$.
	$=2.309 \mathrm{ft} \mathrm{H}_{2} 0$
	$=2.042 \mathrm{in} \mathrm{Hg}$

TEMPERATURE

		$\stackrel{{ }^{\circ} \mathrm{F}}{ }$	C	R	${ }^{\circ} \mathrm{K}$
${ }^{\circ} \mathrm{F}$	$=(9 / 5)^{\circ} \mathrm{C}+32^{\circ}$	-459.69	-273.16	0	0
${ }^{\circ} \mathrm{R}$	$={ }^{\circ} \mathrm{F}+460$	32	0	492	273
${ }^{\circ} \mathrm{C}$	$=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$	70	21	530	294
${ }^{\circ} \mathrm{K}$	$={ }^{\circ} \mathrm{C}+273$	212	100	671	492

COMPARISON OF LEAKAGE RATES IN VARIOUS UNITS

	scc/sec	$\mathrm{scc} / \mathrm{min}$	scc/hr	bubbles/min	time/bubble	in ${ }^{3} / \mathrm{sec}$
	1	60	3600	960	0.06 sec	0.062
	0.0167	1	60	16	3.6 sec	0.001
	10^{-3}	0.06	3.75	1	1 min .	6.25×10^{-5}
*	3×10^{-4}	0.016	1	0.25	4 min .	1.9×10^{-5}
	3×10^{-5}	1.6×10^{-3}	0.1	0.025	40 min .	19×10^{-6}
	10^{-6}	6×10^{-5}	3.6×10^{-3}	9.6×10^{-4}	17.3 hrs.	6.25×10^{-8}
*	10^{-8}	6×10^{-7}	3.6×10^{-5}	9.6×10^{-6}	1730 hrs .	6.25×10^{-10}

* Standard leakage for "zero leak".
** Standard leakage for helium leak test.

TO CONVERT CFM TO SCFM

$$
\begin{aligned}
\frac{\mathrm{Q}}{\mathrm{Qstd}}=\frac{\mathrm{Pstd}}{\mathrm{P}} & \text { where Pstd }=14.7 \text { PSIA } \\
\text { GIVEN: } \quad \mathrm{Q} & =20 \mathrm{CFM} \\
\mathrm{P} & =294 \mathrm{PSIA} \\
\text { Qstd } & =(\mathrm{Q} \text { P)/Pstd } \\
\text { Pstd } & =(20 \mathrm{CFM})(294 \mathrm{PSIA}) 14.7 \mathrm{PSIA} \\
& =400 \mathrm{SCFM}
\end{aligned}
$$

TO CONVERT PSI TO INCHES $\mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{PSI}=27.71$ in $\mathrm{H}_{2} \mathrm{O}\left(60^{\circ} \mathrm{F}\right)$
1 in $\mathrm{H}_{2} \mathrm{O}=0.03609 \mathrm{PSI}$

TYPICAL SPECIFIC GRAVITIES

Liquids: Crude Oil
. 81 to .97
Gasoline
.75
Hydraulic Oil - Mineral Base . 80
Hydraulic Oil - Phosphate Ester Base 1.10
Hydraulic Oil - MIL-H-5606 . 83
Hydraulic Oil - Water Glycol Base 1.05
Kerosene . 82
Water 1.00

TYPICAL SPECIFIC GRAVITIES (Cont.)

Gases: Ammonia 596
Argon 1.379
Carbon Dioxide 1.529
Helium 138
Hydrogen 070
Hydrogen Chloride 1.268
Nitrogen 967
Oxygen 1.105
Air 1.0
Qstd (Air) = M (any gas) x 13.36G (any gas) x _1 / G (any gas)
EXAMPLE: Convert mass flow (lb/min) of any gas to volumeflow (SCFM) of air.
GIVEN: $M(\mathrm{He})=1 \mathrm{lb} / \mathrm{min}, \quad G(\mathrm{He})=.138$
Qstd $=M \times 13.36=1 \times 13.36$
G x_1/Sg 138 x _ $1 / .138$
= 35.96 SCFM (Air)

OXYGEN SERVICE CAUTION

Charging an oxygen system presents inherent hazards which cannot always be handled with absolute safety, especially with pressures in excess of 2000 PSI.

This product has been cleaned and must be maintained in accordance with Circle Seal Controls CSC/CCD 29.20 or better for oxygen service. Materials used have been determined to be compatible for use with oxygen. Materials (elastomerics, plastic and other soft substances) have been tested in accordance with MIL-V5027D @ 2175 PSI.
Materials and cleaning are sufficient for oxygen service applications to 3000 PSIG per MIL-V-5027D. For oxygen applications over 3000 PSI the user is responsible for establishing system cleanliness and operational requirements. Consult with your company's Engineering/Safety or Management personnel before using this product.

Extreme CAUTION should be observed when operating this product for oxygen service. Operate/Turn handle VERY SLOWLY when charging a system and when venting a system to prevent FIRE and EXPLOSION.

System cleanliness must be maintained to prevent ignition causing FIRE and EXPLOSION.

[^0]: A -No effect-Excellent
 B - Minor effect-Good
 C - Moderate effect-Fair, contact Angar
 D - Severe effect-Not recommended
 X -Carbon/Ceramic Seal

[^1]: \dagger-P. V.C. - Satisfactory to $72^{\circ} \mathrm{F}$

 - - Polypropylene-Satisfactory to $72^{\circ} \mathrm{F}$
 tt -Polypropylene-Satisfactory to $120^{\circ} \mathrm{F}$
 *o -BUNA N-Satisfactory for Seal \& 0-Rings

[^2]: A - No effect-Excellent
 B - Minor effect-Good
 C - Moderate effect - Fair, contact Angar
 D - Severe effect-Not recommended
 X -Carbon/Ceramic Seal

